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Technical Report on AFOSR Grant F49620-95-1-0297 

Global Two-Scalar Velocimetry and Development of Low-Order 
Models for Use in Optical-Phase Correction in a Plane Mixing Layer 

Summary 

Work was conducted on two projects related to control of shear flows. 

In the first, two-dimensional simulations were performed to study the effects of resolution on 

the extraction of velocity data from measurements of scalar fields in incompressible flows. That 

work, with Bonnie Carpenter, has been published in Physics of Fluids, 8, 2447-2459 (1996) and 

demonstrates "proof-of concept" for the methodology described in an earlier Physics of Fluids 

paper, also supported by AFOSR. A reprint is included in this report. 

In the second, David Cotrell and I have developed a general-purpose algorithm for computing 

all solutions of an arbitrary system of multivariate polynomial equations. That work constitutes the 

basis of a technique for determining the coefficients in low-order models of scalar transport in 

turbulent shear flows. The polynomial root-finder work (preprint included in this report) will be 

submitted to the SIAM Journal on Scientific Computing. The application to low-order model 

construction is described in a paper (with Ari Glezer, Martin Brooke, and their students) to be 

submitted to Journal of Fluid Mechanics). 

1.    Global Scalar Velocimetry 

This work constituted the bulk of Bonnie Carpenter's MS Thesis. A summary is provided 

here. 

Under earlier AFOSR support, we developed a technique for determining n-dimensional 

(n=2,3) velocity fields from measurement of n-\ passive or reactive scalars has recently been 

developed (Pearlstein and Carpenter, Phys. Fluids, 7, 754-763, 1995). That method utilizes n 

linear, first-order, uncoupled hyperbolic equations for n velocity components, derived from 



transport equations for n-\ scalars and conservation of mass. The velocity is determined by 

integration along the characteristic curves defined by the hyperbolic equations. In a second paper 

(Phys. Fluids, 8, 2447-2459, 1996), supported by Grant F49620-95-1-0297, we presented the 

results of a computational proof-of-concept study for a steady, two-dimensional, diverging channel 

flow. We considered the effects of grid resolution (and the shape of its elements) on which the 

scalar is known and its derivatives are approximated, the integration step size used to calculate the 

velocity components along characteristic curves, and the effects of multiplicative noise introduced 

into the scalar field. The results show that extraction of the velocity by integration of the equations 

along characteristics is stable, and that the techniques proposed (ibid.) for removal of singularities 

are effective. For steady flows, noise in the scalar field measurements can be dealt with by 

extracting the velocity from the mean of several noisy scalar fields. 

2.   Low-Order Models of Scalar Transport in Turbulent Flows 

2.1. Fixed-Point Algorithm for Solution of Multivariate Polynomial Equation System 

We have developed a globalization of the Krawczyk algorithm to compute all real isolated 

solutions of systems of N real polynomial equations. This is accomplished by transforming the 

original system to an augmented system in RN+}, in which each of the first N variables lies in the 

interval [-1,1], and the (N+l)-th variable lies in [0,°°). The domain of this latter variable can be 

divided into two intervals [0,1] and [1,°°), the second of which is mapped to [0,1]. Thus, the 

entire domain RN+l can be examined by considering the finite domain [-1,1]" X [0,1] for each of 

two systems. One of the augmented systems can have one or more solutions not corresponding to 

finite solutions of the original system. We use techniques from algebraic geometry to transform 

the (/V+l)-th dimensional system so that spurious solutions are excluded, thus restricting the 

solutions to those corresponding to finite solutions of the original system. The algorithm requires 

bounds for multivariate polynomials over a finite domain. The best of three bounding methods 

considered uses an interval extension of the system, which is stored as a rooted, ordered tree, and 

is equivalent to an N-dimensional Homer scheme that takes advantage of polynomial sparsity. 



We have extended the approach to deal with systems having nonsimple solutions (i.e., with 

multiplicity greater than unity), at which the Jacobian vanishes. This is accomplished by 

constructing a new system that reduces by one the multiplicity of nonsimple solutions. Except in 

degenerate cases, this approach can be applied sequentially until no roots have multiplicity 

exceeding one. 

The algorithm discussed above (and in more detail in a preprint included in this report) has 

been used in determining the coefficients of low-dimensional ordinary differential equations 

systems describing scalar transport in a turbulent plane mixing layer (see §2.2). 

2.2. Low-Order Models of Scalar Transport in a Turbulent Plane Mixing Layer 

In joint work with Ari Glezer and Martin Brooke at Georgia Tech, we have demonstrated the 

utility of the proper orthogonal decomposition (POD) as a data compression technique for efficient 

representation of massive amounts of spatio-temporal passive scalar data acquired in a turbulent 

plane mixing layer. We show, by comparison of computation to experiment, that such 

compressed-data representations are useful in "multi-step-ahead" prediction of scalar transport in a 

turbulent plane mixing layer. Such capability will allow for drastic reductions in the dimensionality 

of the control scheme. 

In our case, the application of ultimate interest is phase correction in aero-optic flows in shear 

flows, in which large coherent structures significantly influence temperature and density, and 

hence index of refraction distributions. A question arises as to whether evolution of the coherent 

structures can be manipulated in such a way that the optical phase distortion can be predicted or 

controlled. While entrainment of irrotational fluid in turbulent shear flows is affected by large- 

scale motions, molecular mixing (and hence reduction of index of refraction gradients) ultimately 

takes place at the smallest scale. The traditional approach to control of mixing through 

manipulation of global instability modes of the base flow depends on the classical cascading 

mechanism to transfer energy from the large coherent structures, whose evolution is being 

manipulated, to the scales at which molecular mixing occurs.  Although mixing at the smallest 



scales is coupled to control of large coherent structures, more efficient control of mixing might be 

achieved by direct control of both large- and small-scale mixing processes. 

A paper, to be submitted to the Journal of Fluid Mechanics, describes our implementation of 

the POD technique in representing massive amounts of spatio-temporal temperature data in this 

system. In that paper, we also show how several neural network-based prediction methods are 

able to predict evolution of the temperature field based on past data. We also show how another 

approach, based on a low-order nonlinear ODE system constructed from the data, attacks the same 

problem. The implications of the results for flow control are discussed in a final section. 

Publications 

One paper has been published that acknowledges support from this grant: 

Carpenter, B. N. and A. J. Pearlstein, "Simulation of Extraction of Velocity from Passive 
Scalar Data in a Two-Dimensional Diverging Channel Flow," Physics of Fluids, 8, 2447- 
2459, 1996. 

One paper acknowledging this grant is essentially ready to be submitted for publication: 

Cotrell, D. L. and A. J. Pearlstein, "Globalization of the Krawczyk Algorithm to Compute All 
Simple and Nonsimple Isolated Real Solutions of Systems of Polynomial Equations," to be 
submitted to SI AM Journal on Scientific Computing. 

Another paper acknowledging this grant is in preparation, and will be submitted later this Spring: 

Oljaca, M., A. Glezer, W. Zhao, M. Brooke, D. L. Cotrell, and A. J. Pearlstein, Efficient 
'Multiple-Step-Ahead' Prediction of Mesoscale Passive Scalar Transport in a Turbulent Plane 
Mixing Layer Using the Proper Orthogonal Decomposition for Data Compression," in 
preparation. 

Human Resource Development 

The work of two graduate students was supported by this Grant. 

Bonnie Carpenter completed her MS degree, and was well into her PhD thesis (having passed the 
departmental PhD qualifying exam) when she decided to marry and go to work at the Aerospace 
Corporation in southern California. She is the co-author of the paper described in §1. 

David Cotrell completed his MS degree, and is continuing as a PhD student in mechanical 
engineering. He is the co-author of the papers described in §2. 



Simulation of extraction of velocity from passive scalar data 
in a two-dimensional diverging channel flow 

Bonnie N. Carpenter3' and Arne J. Pearlsteinb) 

Department of Mechanical and Industrial Engineering, University of Illinois at Urbana-Champaign, 
1206 West Green Street, Urbana, Illinois 61801 

(Received 6 June 1995; accepted 30 May 1996) 

A technique for determining n -dimensional (n=2,3) velocity fields from measurement of n-\ 
passive or reactive scalars has recently been developed [Phys. Fluids 7, 754 (1995)]. The method 
utilizes n linear, first-order, uncoupled hyperbolic equations for n velocity components, derived 
from transport equations for n -1 scalars and conservation of mass. The velocity is determined by 
integration along the characteristic curves defined by the hyperbolic equations. Here we present the 
results of a computational proof-of-concept study for a steady, two-dimensional, diverging channel 
flow. We consider the effects of the resolution of the grid (and the shape of its elements) on which 
the scalar is known and its derivatives are approximated, the integration step size used to calculate 
the velocity components along characteristic curves, and the effects of multiplicative noise 
introduced into the scalar field. The results show that extraction of the velocity by integration of the 
equations along characteristics is stable, and that the techniques proposed for removal of 
singularities are effective. For steady flows, we show that noise in the scalar field measurements can 
be dealt with by extracting the velocity from the mean of several noisy scalar fields. © 1996 
American Institute of Physics. [SI070-6631(96)03109-1] 

I. INTRODUCTION 

Several techniques for determining velocity fields from 
measurements of a single scalar have been proposed.1-4 In a 
recent paper,5 we have discussed the attributes of these ap- 
proaches and presented a different method, requiring mea- 
surement of n -1 passive or reactive scalars to uniquely de- 
termine an n -dimensional («=2 or 3) solenoidal 
(divergence-free) velocity field. 

As discussed in Ref. 5, our method differs from previous 
approaches, in that it recovers the exact velocity field in the 
limit of complete data (i.e., perfect spatial and temporal reso- 
lution of noise-free scalar fields). Since experimental data is 
always acquired with finite spatial and temporal resolution, 
and is always corrupted to some degree by noise, it is impor- 
tant to understand how our method is affected by these prop- 
erties of real data, and to develop techniques for minimizing 
error in the extracted velocity field. 

In this paper, we address the issues of spatial resolution 
and noise in the context of a steady two-dimensional diverg- 
ing channel flow. Flow in a diverging channel is an excellent 
testbed for developing an understanding of noise and resolu- 
tion effects, since the geometry admits an exact solution of 
the Navier-Stokes equations.6 Moreover, the divergent na- 
ture of the flow is reminiscent of a plane mixing layer, a 
generic flow of interest in a number of applications. Finally, 
for simple boundary conditions, this flow gives rise to a sin- 
gularity in the hyperbolic equations along a curve, thereby 
allowing evaluation of the technique proposed for integration 
through such a singularity.5 

In Sec. II, the analysis and working equations derived 

"'Present address: Aerospace Corporation, El Segundo, California 90245. 
^Corresponding author: Telephone: (217) 333-3658; fax: (217) 244-6534; 

Electronic mail: ame@ajpiris.me.uiuc.edu 

earlier5 for extraction of a two-dimensional, solenoidal ve- 
locity field from a single scalar field are briefly reviewed. In 
Sec. Ill, we discuss the diverging channel flow and suitable 
scalar boundary conditions. In Sec. IV, the procedure for 
extracting the velocity field from the resulting computed sca- 
lar field is described. The results of the extraction are pre- 
sented in Sec. V; discussion and conclusions follow in Sec. 
VI. 

II. DETERMINATION OF TWO-DIMENSIONAL 
SOLENOIDAL VELOCITY FIELDS FROM 
MEASUREMENTS OF ONE SCALAR 

In this section, we present the working equations derived 
earlier5 for extraction of a two-dimensional, solenoidal ve- 
locity field from measurements of a single scalar. Our tech- 
nique is based on recognizing that the transport equation, 

dS 

~dt 
+ u-V5=a V2S + R, (1) 

for a scalar S with diffusivity a is linear in the velocity 
components, and that it and the solenoidal continuity equa- 
tion, 

V-u=0, (2) 

constitute two linear equations in two velocity components. 
The formulas will be displayed in a Cartesian coordinate 

system. (Results for general curvilinear systems are shown in 
Ref. 5.) The second term on the right-hand side of (1) allows 
for the scalar to react, with kinetics that are essentially arbi- 
trary as long as they are known and the rate of reaction 
depends solely on S, x, y, and t. If temperature is the scalar 
for which full-field measurements are available, then (1) will 
be replaced by an energy equation with a replaced by the 
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thermal diffusivity K, and the reaction rate set to zero. In the 
nonreactive case, in two dimensions, (1) can be written as 

dS       dS        dS 
— + u— + v — = a V2S, 
dt        dx        dy 

(3) 

where V2 is the two-dimensional Cartesian Laplacian, and u 
and v are the x and y components of u. Equation (3), with 
the two-dimensional form 

du     dv 
—+—= 0, 
dx     dy 

(4) 

of (2) constitutes a pair of linear equations in u(x,y,t) and 
v(x,y,t). Solving (3) for v and substituting into (4) yields 

VSxV 
dSldy '*z   dy \dS/dyj 

(5a) 

while solution of (3) for u and substitution into (4) yields 

VSxV —) dS/dxj 
•e =- 

dx \ dSldx 

where 

G=a V2S- 
dS 

It' 

(5b) 

(6) 

Equations (5a) and (5b) constitute a pair of linear, first- 
order, uncoupled hyperbolic equations in the velocity com- 
ponents u and v. Given the scalar field data, the solution of 
(5a) and (5b) is made unique by specification of appropriate 
boundary conditions on u and v. Equations (5a) and (5b) can 
then be integrated along characteristic curves, which are the 
same for both equations. No time derivatives of the velocity 
components appear in (5a) and (5b), so that no initial data on 
the velocity field are required. As this is not an initial value 
problem, errors in the determination of the velocity field will 
not grow temporally. 

Equations (5a) and (5b) have an apparent singularity 
when either component of the gradient vanishes. As shown 
in Ref. 5, these apparent singularities are "removable" in all 
cases except when VS vanishes identically over an area. The 
singularities are removable in the sense that the velocity field 
can be determined at points or along curves where one or 
both components of VS vanish, and that u-VS = 0 over an 
area poses no difficulty unless VS=0 identically. If only one 
component of VS vanishes, then the integration can be per- 
formed for one velocity component using the nonsingular 
equation of (5a) and (5b), and the other velocity component 
can be determined from the scalar transport equation (3). If 
both components of VS vanish at a point or on a curve, then 
u can be determined as follows. Using index notation, we 
rewrite (3) as 

dS 
uj — = G. 

Taking the gradient of both sides of (7), we obtain 

d2S       dG 
1 dXj dXj     dXj' 

i = l,2, 

(7) 

(8) 

= H> 

FIG. 1. Flow in a diverging channel. Velocity field shown schematically. 

when VS vanishes. At each point, (8) is a system of two 
linearly independent, nonhomogeneous algebraic equations 
for the velocity components. 

III. THE SCALAR FIELD 

To better understand the properties of the proposed pro- 
cess for determining the velocity field from passive scalar 
measurements, a computational proof-of-concept study has 
been performed using advection of a passive scalar in steady 
two-dimensional diverging channel flow. We can compare 
the velocity extracted from the computed scalar field to the 
Jeffery-Hamel solution,6 an exact solution of the Navier- 
Stokes equations. This involves three steps: calculation of 
the Jeffery-Hamel flow, calculation of the scalar field using 
the Jeffery-Hamel solution, a scalar transport equation, and 
appropriate boundary conditions, and extraction of the veloc- 
ity field from the computed scalar field by integration along 
characteristics. 

One goal of this work is to investigate the effects of 
spatial resolution and noise on the accuracy of the extracted 
velocity components. In this steady two-dimensional case, 
the sources of error in the extracted velocity field include the 
spatial resolution of the scalar field used to approximate de- 
rivatives of the scalar in (5a) and (5b), and the integration 
step size along the characteristics used in extracting the ve- 
locity components. We also consider the effect of multipli- 
cative noise (e.g., shot noise in full-field optical measure- 
ment of temperature by laser-induced fluorescence, etc.) 
corrupting measurements of the scalar field. 

A. Exact velocity field 

We consider steady two-dimensional flow in a diverging 
channel, as shown in Fig. 1. In this case, there is an exact 
solution o'f the Navier-Stokes equations, referred to as 
Jeffery-Hamel flow,6 with the velocity field depending on 
the half angle <f>0 and the Reynolds number, Re=u0r/v, 
where u0(r) is the velocity along the central streamline (<f> 
=0). In cylindrical coordinates, this purely radial flow can be 
written as 

2448        Phys. Fluids, Vol. 8, No. 9, September 1996 B. N. Carpenter and A. J. Pearlstein 



vF(d>) 
e,, 

where F is an even function of <p given by 

(9) 

F(<£) = Re-6 

with k found from 

]+k2 

1 + Re/2V 

. ]+k2 
\kl sn' 

l+Re/2 

\+k 

1/2 

4>,k 

:sn 
1+Re/2\1/2 

\+V ~ <l>0^ 
3Jt2(l+2/Re) 

for Re<Re*(0o), or by 

Re-tf + (Re+g)cn[(2$/3)1/2tfa] 
F(0)= \+cn[(2q/3)m4>,k] ' 

with k and q defined by 

6 + Re(5-4it2)       r/oj.D-M/2 

6 + ReTT + 4F)    C" 

2 + Re 

2fc2-l <£<>,* 

and 

<? = 
3(1+Re/2) 

2*2-l    ' 

(10a) 

(10b) 

(Ha) 

(lib) 

(He) 

for Re>Re*(<£0), where sn and en are Jacobian elliptic func- 
tions, and Re*(5°) = 684.6 Bisection is used to determine k in 
(10b) or (lib). Once it is known, the velocity field can be 
found using Eq. (10a) for Re>Re*(<£0) or Eqs. (lla)-(llc) 
for Re<Re*(0o). 

B. Computed scalar field 

We use the exact velocity field to calculate the scalar 
field. Before choosing boundary conditions for the scalar, it 
is useful to consider the nature of the characteristic equations 
for steady two-dimensional solenoidal flow. In recognition of 
the fact that experimental data will frequently be available on 
domains whose boundaries do not coincide with constant 
coordinate curves or surfaces of simple coordinate systems, 
we will extract the velocity components using a Cartesian 
system, rather than the radial coordinates that are natural for 
the geometry at hand. Thus, (5a) and (5b) reduce to 

= a\(V2S)y- 
W2S)Syy 

(12a) 

■SyVx + SxVy-\Sxy- 
oyJx 

sx 

or  (V2S),- 
(V2S)S, 

characteristics originating on the wall emanate into the flow 
or in the opposite direction out of the channel. If a charac- 
teristic originating on the wall does not emanate into the 
flow, then the direction of integration along the characteristic 
must be reversed. This can be accomplished easily by a 
change of variables. Letting u' = -u and i>' = - u and sub- 
stituting into (12a) and (12b) yields 

STS 

(12b) 

where subscripts denote partial derivatives. From (12a) and 
(12b) one can see that the characteristic curves depend solely 
on the x and y derivatives of the scalar. Therefore, in order 
for the characteristics to propagate away from a wall (at 
<f>=±<p0, on which u = i; = 0), the scalar on at least one wall 
must be nonuniform. Note that if S, and Sy are nonzero, 

-SX + SX+ \S y"x  ' "x"y '  \ "xy c 
x~yy\u, 

a\ (V2S)y- 
(V2S)Syy (13a) 

O yU jpjf   I 

-SyV'x + Sxv'y-\Sxy- -jj—lv 

(V2S)SX 
= a\(^S)x- 

Sx 

(13b) 

The net result is to change the signs of the right-hand sides, 
so that characteristics that did not previously emanate into 
the flow will now do so. 

A simple choice for the boundary conditions on the sca- 
lar is 

S(r,<P0) = Sv 

Su 

S(r,-<f>0)=\  S,+ 

r^r i> 

r2-rx 

r2^r, 

(52-S,),    r,«r«r2, 

(14a) 

(Hb) 

However, due to the discontinuity in the radial derivative of 
S on the <f>= - <f)0 wall, the corresponding scalar field is not 
sufficiently differentiable to allow computation of the third 
derivatives needed in (12a) and (12b). To obtain a suffi- 
ciently smooth scalar field, we will require that Dirichlet 
conditions on S be continuously differentiable. Such a set of 
boundary conditions is 

tanh ^[(r-rO/rJ + tanh b 

1 + tanh b 

= Sw(r), (15a) 

S(r,<f>0) = S], (15b) 

for r,>0, fc>0. 
At this point, we nondimensionalize by defining i=r/rl, 

Ö=(5-S,)/AS, and <j>=(<f>+<t>0)f2<f>0. The dimensionless 
scalar transport equation and boundary conditions are 

F{<f>) 36 

~7~H 
i    d2e d0\  

tanh b(£-l) + tanh b- 
0( £.0) = TTTZT-Z «Wo. 1 + tanhfc 

ö(|,l ) = 0, 

(16) 

(17a) 

(17b) 

where F( c/>) = F( 2 <\>0 <f> - (f>0), and a= via is the ratio of mo- 
mentum and scalar diffusivities. We see that 0W(£) vanishes 
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at £=0, and approaches unity as £—K*. The parameter b 
characterizes the sharpness of the transition of the scalar dis- 
tribution on the wall at £=1. We represent the solution of 
KÜ) as 

<?(£,<£)= E a„(£)smn7T(f>+g(^<f>), (18) 
n = l 

where g will be chosen to satisfy the boundary conditions 
(17a) and (17b), and each term in the summation will satisfy 
homogeneous boundary conditions on the walls. 

If g (£,<£) and the Fourier expansion each satisfy the 
scalar transport equation at the walls, the scalar distribution 6 
will be sufficiently differentiable there. Since F = 0 at the 
walls, we require 

1   d 1 d28 

€d£\'dt)    * fa2 d<f>2 
= 0. (19) 

#=o,i 

Setting 

g(t,& = go(t) + hi(t)+Pg2U)+&g3(0,     (20) 

one can show that 

go(£)=<U£), (21a) 

8?U) = £ sech2 fc(£-l) 
2 4>7„b 

1 + tanh b 

x[2fcftanhMf-l)-l], (21b) 

*3(f)=i«2(£). 

J!(ö=-fl»(f)-5«2(f). 

In light of (18), (16) becomes 

(21c) 

(2 Id) 

2 
1-F(4>)a\ 

a".+ \ 1 \a; Wo ?a" sin mr<f) 

dh 
(22) 

where primes denote differentiation withjrespect to f. Multi- 
plying by sin mir*, integrating from <f>-0 to <f>=\, rear- 
ranging terms, and approximating the radial derivatives of 
each function a„ by second-order central differences, we ob- 
tain 

2 (A£)21 

] + 2Tjla 
J+i_ 2 + 

2<t>c S w-gyr 
2 K+! 

m=l 
3m     Mm.n 

= 2(A£)2(-Bn(£7)+-Cn(£;)J,     l^n^/V,        (23) 

where A£=£, +]-£,-, a„(£;-) is approximated by a{, and 

Jo 
F(<f>)sin nir<f> sin mir^ <f</>, (24a) 

w-j; 1      ^S 

«^\s ^/ 4<fie dp '^ff^lH- 
_ _ (-Dn+,+i 

sin n7r<^> */<£ =  

fy 
J f, 

(-1) 
n+l 

07T 
+ 

2[(-l)"-l]    (-1)" 
„ij n 77 

1      /(-l)n + 1 + l\ /6(-D"    (-Dn+1 

+ ^T? I ———*2(^)+h^?-+ 
WUj mr n 7T nv £dt\t  dt; 

3     (-l)n+! 

+ —^- — g3(£;)>    (24b) 2*1? nn 

and 
+ - ^2 

/: 
<£ F(<£)sin n-rr</> d<j> 

:„(£)= f 
Jo 

l <?g 
F(</>)sin «7T* d<£ + ■ 

dAl\ 
\: 

ji <f>F(<f>) sin niT<f> d<f>, (24c) 

= ^£o|    I"1 

^ Jo 
F(0)sin MTT<£ d$ 

rfg,     P  -   - 
+ —rd    I   <f>F(<p)sin rnr<f> d<ß 

( Jo <*f 

with a°=a^ = 0. The infinite series in (23) is then truncated 
to TV terms. We choose £/=£«, to be large enough so that the 
scalar field at £„ is approximately linear in </>. 

This system of linear algebraic equations for the coeffi- 
cients a{ was solved using standard numerical linear algebra 
software. The scalar distribution 8 at a given point is deter- 
mined from (18) using a finite number of terms and interpo- 
lation between the discrete values of £ at which the coeffi- 
cient functions an have been approximated. 
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IV. EXTRACTION OF VELOCITY FIELD FROM THE 
COMPUTED SCALAR FIELD 

The final step is to calculate the velocity by the method 
of characteristics. The nondimensional forms of (12a) and 
(12b) are 

/      MV -6xiix+e][uy+\exy--zr-\u e, 

*(«">>-*¥* (25a) 

-eyvx+exvy-\ exy-^ 

i 

Pe 
(V2*),- (25b) 

where Pe = <rRe is the Peclet number. To integrate these 
along a characteristic we rewrite (25a) and (25b) as 

dx 

Is = - eY, (26a) 

(26b) 

dv      , l /   ,      (V2ö)ex 

(26c) 

(26d) 

Equations (26a)-(26d) are integrated along characteristics by 
a Runge-Kutta method with constant step size. The x and y 
derivatives can be obtained from £ and <f> derivatives by the 
chain rule. 

Recalling that 

0WU.<Ä>=2 an(£)sinrt77^+g(£,<£), (27) 

we locally approximate the coefficient functions a„(£) and 
their first three radial derivatives by fourth-degree Lagrange 
polynomials fitting the values a'„. To illustrate this, consider 
integration along a characteristic through a point (x0,y0), as 
shown in Fig. 2. The radial grid line closest to (x0,y0) is j*3, 
and a Lagrange polynomial is fitted through the five radial 
values £j (j = jx ,j2 J3 JA Ji) to approximate a„(£) at 
(jr„,>„). Radial derivatives of a„(£) are approximated by de- 
rivatives of the polynomial. Computation of derivatives by 
this method provides a good test of the efficacy of "singu- 
larity removal" by the procedure discussed at the end of Sec. 
II. However, this method for obtaining the necessary deriva- 
tives of the scalar provides more accurate information than 
one would expect in experiment, since the azimuthal deriva- 
tives are computed from an analytical expression rather than 
by numerical differentiation of spatially discrete data. For 
this reason, the scalar was also evaluated at locations on a 
rectangular grid using (27), as discussed in Sec. V A. The 

FIG. 2. Relationship of radial grid lines to a characteristic curve. 

derivatives of 6 found from the chain rule were then com- 
puted by second-order accurate central difference approxi- 
mations, or by second-order accurate lopsided or one-sided 
difference approximations where necessary. 

The integration is initiated at a number of points along 
the <f>=-<f>0 wall and continued until the characteristic 
curves leave the computational domain at £*. This provides 
a velocity field at points on the characteristics (cf. Fig. 3). 
Velocity profiles at a given x position can be obtained from 
the value on each characteristic crossing a constant-* line. 

As discussed in Sec. II and in more detail in Ref. 5, the 
vanishing of either component of Vö leads to an apparent 
singularity. In the present case, this corresponds to the van- 
ishing of d&dx {dOldy is nonzero throughout the domain). 
We have examined four ways to extract u and v. 

(1) Extract u and v from (25a) and (25b), except when 
use of a dimensionless scalar transport equation analogous to 
(3) is necessary to pass over an apparent singularity in (25b), 
as discussed in Sec. II. 

(2) Extract u from (25a) and compute v from the analog 
of (3). 

(3) Extract v from (25b) and compute u from the analog 
of (3), except at points where ddldx vanishes, where the ex- 
traction proceeds according to method (2). 

(4) Extract one velocity component using the hyperbolic 
equation (25a) or (25b) in which the denominator of the 
second term in the second factor on the right-hand side has 

FIG. 3. Characteristics for Eqs. (25a) and (25b). Here Re=2, <r=7, b=2, 
7=40,^ = 12, AJ = 10"

2
. 
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the largest magnitude. The other velocity component is ob- 
tained from the analog of (3). As discussed in Sec. V A, we 
expect the fourth approach to extract the most accurate ve- 
locity field. 

Several noise processes can corrupt optical measure- 
ments of the scalar, and can be expected to lead to errors in 
the extracted velocity field. Here, we consider multiplicative 
noise corrupting M measurements of a steady scalar field on 
a rectangular grid, so that each measured field is related to 
the actual field by 

02 

CLdU/ .Vj) = 0ac.ua>U; ,y>)[ 1 + T)D(m\xt,?;)] 

(l=Sm=£M), (28) 

where 77 is the maximum amplitude of the noise and D is a 
random number with |D|==1 at each point on the grid. If the 
temperature field were computed M times and then averaged, 
we would obtain 

<e!£LdU.-.>'j)>=<ö«n.dUi.y;)> 

+ v(D(m\xi,yj)ex^{xi,yj)),   (29) 

where ( ) indicates an ensemble average. For large M, (29) 
reduces to 

{e\ £Ld(*.-•>;)>* e.. actual Xj,yj), (30) 

since (D)—»0 for a sufficiently large number of realizations. 
An alternative approach would be to extract the velocity 
from each of the M computed scalar fields and then average 
the extracted velocities. Besides being more cumbersome, 
this method typically yields the wrong result (even in the 
limit M —♦<*) for nonzero 77, since the noise appears nonlin- 
early in the hyperbolic equations for u and v. 

V. RESULTS 

Before considering the extracted velocity fields, we first 
show that the scalar field computation converges as J and N 
increase. For all results shown here, Re=2, cr=7 (corre- 
sponding to the Prandtl number for water), and b = 2. Figure 
4 shows the absolute difference on the line x = 7 between 8 
calculated for .7=160 and N=48 and 8 calculated at lower 
resolutions. The calculation of the scalar (hereinafter referred 
to as temperature) distribution converges rapidly, and the 
absolute difference between 0/.= i6O.N=48 anc* 0/ = 4ojv=i2 's 

less than 10~6. Therefore, we will consider the "exact" tem- 
perature field to be converged when computed with 40 radial 
grid points and 12 azimuthal modes. 

Most present optical detectors utilize identical rectangu- 
lar (usually square) elements in a regular array, with implicit 
signal averaging over the area of each element. Thus, the 
temperature data will normally present themselves on a rect- 
angular grid, uniformly spaced in both Cartesian directions. 
Since in our simulation computation of 8 is not performed on 
a rectangular grid, interpolation is required to effect a rect- 
angular presentation of the data. This constitutes an addi- 
tional source of error in our simulated extraction of u. 

Extraction of u from data on a rectangular grid requires 
approximation (e.g., by finite differences) of seven x and y 
derivatives of 8. The magnitude of the error introduced into 
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FIG. 4. Absolute differences at A: = 2.0 between the scalar field computed 
with J = 160, N=48, and those computed with less accuracy, (a) (J,N) 
= (10.3), (20,6), (30,9), (40,12). (b) (AN) = (20.6), (30.9), (40,12). 

u will depend on the noise level, grid size, the difference 
schemes used to approximate the derivatives, and the algo- 
rithm and step size used to integrate the hyperbolic equations 
along the characteristics. 

A. Noise-free results 

We first illustrate the extraction of u and the nature of 
the apparent singularity and its removal, in the absence of 
noise in 6 (77=0). 

We begin by extracting u using azimuthal and radial 
derivatives of 6 and the chain rule to approximate x jind y 
derivatives. We use (27) to evaluate the azimuthal {<f>) de- 
rivatives of 6, and fourth-degree Lagrange polynomials to 
evaluate radial derivatives at points on the characteristics. 
This allows us to extract u with less error in approximating 
the derivatives of 8 than would be incurred if interpolated 
values of 8 were numerically differentiated on a rectangular 
grid. 

Integrating the hyperbolic equations for u and v without 
removing the singularity by the methods discussed in Sec. II 
and Sec. IV, we obtain the results shown in Fig. 5. The 
integration step size is As = 10~2. Points in Figs. 5(a) and 
5(b) represent values of the x- and y-velocity components, 
respectively, on characteristics crossing the line JC=1.8. Fig- 
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FIG. 5. Here *= 1.8, Re=2, a=l,b = 2, J=40, N=12, and AJ = 1(T
2
. Here u and v extracted directly from hyperbolic equations. Filled symbols denote the 

boundary data, (a) Extracted (O) and exact (—) x component; (b) y component of velocity; (c) relative error in the x component; (d) y component of velocity. 

ures 5(c) and 5(d) the relative errors in «. and v, respectively. 
At jr=1.8, the relative error in v is much larger near the 
nonisothermal wall than near the isothermal one. The char- 
acteristic curves on which the error in v is large are those 
that have crossed the curve d$/dx=0 shown in Fig. 6. (Note 
that dd/dy<0 everywhere in the domain.) This is what is 
expected for extraction without removal of the singularity in 
(25b). By integrating the hyperbolic equation for u and com- 
puting v from the energy equation, one obtains the results 
shown in Fig. 7, in which the relative errors in v are much 
lower than those shown in Fig. 5. 

The relative error for u in Fig. 7(c) increases to approxi- 
mately 5% on the characteristics closest to the isothermal 
wall. The values of v on these characteristics, computed 
from u and the energy equation, are in error by as much as 
10%. To understand the source of this error, consider again 
the characteristic curves shown in Fig. 3. The characteristics 
lying close to the isothermal wall must traverse a greater 
distance to reach x=1.8, but the integration is stable and 
errors do not grow rapidly along the integration path. We 
believe that the larger errors are due to errors in approximat- 
ing radial derivatives of temperature in the upstream region. 
Finally, we note that the relative error in v is approximately 
twice that in u. This is not surprising since v depends on a 
previous computation of u. 

To more faithfully mimic extraction of u from experi- 
mental data, the temperature was computed at locations on a 
rectangular grid using (27), and its derivatives were approxi- 
mated by finite differences. The resolution of the grid is de- 
noted by (Ig ,Jg), where lg and Jg are the number of x and y 
grid points, respectively. With /^=215 and Jg=2\0, we first 
investigate the effect of integration step size. Figures 8 and 9 
show results for AJ = 10

_1
 and 10~2, respectively. These re- 

sults were obtained by integrating the hyperbolic equation 
for u and computing v from the energy equation. The rela- 
tive errors in both extracted velocity components are much 
smaller for As = lCT2 than for As=10~'. For AJ = 10"

3
 (not 

shown), the relative error decreases slightly at a few points 
near the isothermal wall but is otherwise unchanged. De- 
creasing As to lO-4 gives no further reduction in error. 
Therefore the remaining error is due to approximating the 
derivatives of 6 by finite differences using 8 values interpo- 
lated onto the points of a rectangular grid. Figures 7 and 9 
show that the maximum error in u doubles from 5% to 10% 
and that for v doubles from 10% to 20% as a result of finite- 
difference approximation of the derivatives. Thus, the errors 
incurred by the integration (for AJ=10~

2
) are much smaller 

than those due to approximation of temperature derivatives 
on a grid. Since the relative errors in the velocity compo- 

♦ - 0 

FIG. 6. Sign of 0, for Jeffery-Hamel flow (Re=2, a=7, b=2). 
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nents are virtually the same for A5 = 10 2, 10 3, and 10 4, 
the remainder of the calculations will be performed with 
A5=10-2. 

We next investigate the effects of spatial resolution and 
element shape on extraction of the velocity components. Fix- 
ing A.y = 10~2, 7 = 40, and /V=12 as discussed above, and 
considering grids with (7 ,J ) = (200,34), (300,52), (400,68), 

and (500,86), we obtain the results shown in Fig. 10. Again, 
these results are obtained by integrating the hyperbolic equa- 
tion for M and computing v from the energy equation. Fig- 
ures 10(a)(i,ii) show that the errors, especially near the iso- 
thermal wall, are very large for this coarse grid. When the 
resolution is increased to (300,52), the error decreases sig- 
nificantly [Figs. 10(b)(i,ii)] but is still quite large (>20%) at 
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FIG. 8. Here J=1.8, Re=2, <r=7, fc=2, J=40, N=\2, A5 = 10"', /,=215, and Jg=2\0. Here, u is extracted directly from the hyperbolic equation; v is 
computed from u and scalar transport equation. Filled symbols denote the boundary data, (a) Extracted (O) and exact (—) x component; (b) y component of 
velocity; (c) relative error in the x component; (d) y component of velocity. 
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computed from u and the scalar transport equation. Filled symbols denote the boundary data, (a) Extracted (O) and exact (—) x component; (b) y component 
of velocity; (c) relative error in the x component; (d) y component of velocity. 

some points. When the resolution is increased further to 
(400,68) [Figs. 10(c)(i,ii)], the error is further reduced and 
exceeds 20% only near the isothermal wall. For (500,86) 
[Figs. 10(d)(i,ii)], the relative error in u is always less than 
12%, while the error in v exceeds 10% only on the two 
characteristics closest to the isothermal wall. This is due to 
errors incurred in approximating temperature derivatives at 
and near the upstream origin of these characteristics. A lo- 
cally refined grid could be used to reduce this source of error. 

Comparison of Fig. 9 to Figs. 10(c) and 10(d) shows that 
the grid of nonsquare elements (Fig. 9) gives results with 
accuracy comparable to that of a grid of square elements 
[Fig. 10(c)] having about 40% fewer points (45 150 versus 
27 200), and that the accuracy is inferior to that of a grid 
with a comparable number (43 000) of square elements [Fig. 
10(d)]. 

Four approaches for extracting the velocity components 
from the hyperbolic equations, and possibly the energy equa- 
tion, were discussed in Sec. IV. The numerical results de- 
scribed above were found with Approach 2. Setting J=40, 
7V=12, and As = 10-2 as before and fixing 
(/, ,Jg) = (400,68), we compare the accuracy of the four ap- 
proaches. Approach 1 extracts u and v from the hyperbolic 
equations except when the energy equation is necessary to 
bypass a singularity. The x component is identical to that 
shown in Fig. 10(c)(i), and the y component is shown in Fig. 
11(b). As discussed above, the results from Approach 2 are. 

" shown in Figs. 10(c)(i,ii). Those from Approach 3 (u ex- 
tracted from the hyperbolic equation and u computed from 
the energy equation) are shown in Figs. 11(a) and 11(b). 
Results from Approach 4 [one velocity component extracted 
from the hyperbolic equation (12a) or (12b) having the larger 
denominator in the second term of the second factor on its 

right-hand side, with the other component computed from 
the energy equation] are identical to those shown for Ap- 
proach 2 in Figs. 10(c)(i,ii). This is because \dd/dy\ 
>\d6/6x\ throughout the domain, so that Approaches 2 and 
4 are identical. Figure 11(b) shows that extraction of i; from 
its hyperbolic equation results in large errors, since \d8ldx\ is 
small [O(10~3)] throughout the domain, especially when 
close to (but not on) the curve \ddldx\=Q shown in Fig. 6. 
Figure 11(b) shows that extraction of u from the energy 
equation using values of v computed from its hyperbolic 
equation results in large errors in u also. Therefore the most 
accurate method for extracting the velocity is Approach 4 
(identical to Approach 2 for this particular flow). All subse- 
quent results are obtained using Approach 2. 

B. Results with noise 

To investigate the effects of noise on the error in the 
velocity extraction, the temperature field was corrupted by 
multiplicative noise at the grid points. The most accurate 
temperature field available, .7 = 160, N=12, with an integra- 
tion step size A5 = 10~2, was used for all the following re- 
sults, unless otherwise specified. For noise amplitudes 
*7=10-4, 10~6, and 10~8, Figs. 12(a)(i,ii), 12(b)(i,ii), and 
12(c)(i,ii), respectively, show the extracted velocity for a 
single realization (M = l), with a grid composed of non- 
square elements (7^=215, Jg=210). For 77= 10-4, the errors 
in both velocity components are large (>100%). When 77 is 
reduced to 10-6, the errors in both velocity components are 
still large, but significantly smaller than for rj= 10~4. When 
r) is reduced to 10-8, the errors incurred due to noise are 
insignificant, and the results are similar to the noise-free 
case. 
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If a grid with square elements (7^=400, J g = t&) is used 
instead, the results shown in Figs. 13(a) and 13(b) are ob- 
tained for 77=10"" and 10~6, respectively. (In what follows, 
both u and v were computed by Approach 2, as discussed 
above, and reference is made to results for both components, 
although results are shown only for u.) For 77=10 , the 
errors in both velocity components are large, but smaller 
than those shown in Figs. 12(a)(i,ii) for nonsquare elements. 
When 77 is reduced to 10~6, the errors in both u and v are 
similar to those with no noise. For 77= 10-8, the results are 
indistinguishable from those with no noise, and nearly indis- 
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tinguishable from those with 77=10 6. Comparison of the 
noise-free results for nonsquare and square elements [Figs. 
9(a) and 10(c)(i), respectively] to the corresponding results 
for 77= 10"6 [Figs. 12(b)(i) and 13(b)] indicates that extrac- 
tion of the velocity components is less susceptible to noise- 

-related errors when the elements of the grid are square. It 
was noted earlier that \d6ldy\>\d6idx\ throughout the do- 
main, so that we extract u from its hyperbolic equation and 
compute v from the energy equation. Since d&dy appears in 
the denominators of two terms in the hyperbolic equation for 
u, errors in approximating d&dy will be exacerbated relative 
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of velocity. 

to those for ddldx as Ay/A* decreases, since 6 is corrupted 
by noise at each grid point. 

We can reduce the effect of noise on the extracted ve- 
locity by averaging, as discussed in Sec. IV. First, we con- 
sider extraction of u and v from each of M noisy tempera- 
ture fields, followed by averaging the velocity fields. By 
fixing /„ = 400, ^. = 68, As = 10~2, and the noise amplitude 

77= 10~6, and taking M = 1, 100, we obtain the results shown 
in Figs. 14(a) and 14(b), respectively. (For these results, 
.7=40 and N= 12.) The noise has little effect on the error in 
u and v for M = l, or for M = 10 or 30 (not shown, but 
indistinguishable from the M = l case). However, for 
M = 100, the effect is dramatic. Both extracted velocity com- 
ponents are significantly less accurate, and it is expected that 

*     0.0 

>.    0.0 - 

>.     0.0 - 

FIG   12  x=\ 8  Re=2, <r=7, b = 2, 7=160, W=48, AJ = 10~
2
, /. = 215, J =210, M = \. (a)(i) x component; (a)(ii) y component for 77= 10"4; (b)(i) x 

-  *       .'v.... * , .„-8 
component; (b)(ii) y component for 77=10"*; (c)(i) x component; (c)(ii) y component for 7=10 8. 
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FIG. 15. Here *= 1.8, Re=2, <r=7, fc = 2, 7=160, N=48, A* = 10-2, 
/ =400, 7 =68, and 77= 10~6. Averaging takes place on the M temperature 
fields, then u and v are extracted, (a) M = 1; (b) W = 100. 

for larger M, the results will be further degraded. This is 
because noise that corrupts quantities appearing nonlinearly 
in the hyperbolic equations can lead to large errors in the 
velocity extracted from individual corrupted scalar fields. 
Thus, the effects on the means of the extracted velocity com- 
ponents can be profound. 
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FIG. 14. Re=2, (7=7, b = 2, 7=160, N=48, AJ = 10-
2
, /,=400, 7,=68, 

and 77= 10"6. Averaging takes place on the M velocity fields extracted from 
each of M noisy temperature fields, (a) W = l; (b) M = 100. 

A better method for ameliorating the effects of noise is 
to average M noisy temperature fields and to extract u and v 
from the mean temperature field. By fixing /g=400, J^ = 68, 
AJ = 10

-2
, and 77= 10"6, and setting M = \ and 100, we ob- 

tain the results shown in Figs. 15(a) and 15(b), respectively. 
For M = 1, the errors in both velocity components are similar 
to the noise-free case. When M is 10, 100, 1000, or 10 000, 
the results are indistinguishable from the noise-free case. 
Therefore, the noise in the temperature field has no effect on 
the extracted velocity for M^IO. Fixing 7^=400, -/g = 68, 
AJ = 10~

2
, increasing 77 to 10"", and setting M to 10, 100, 

1000, and 10 000, we obtain the results shown in Figs. 16(a), 
16(b), 16(c), and 16(d), respectively. For M = \ [Fig. 13(a)], 
the errors in both velocity components are large. As M is 
increased, the errors decrease until for M = 10 000, the error 
due to noise is insignificant compared to those associated 
with discretization onto a grid. Therefore, the error due to 
noise can be reduced by averaging a sufficient number of 
temperature fields before extracting the velocity. 

VI. DISCUSSION AND CONCLUSIONS 

We have shown that it is possible to extract both velocity 
components from advected scalar data for a two-dimensional 
steady, solenoidal flow with appropriate scalar boundary 
conditions. The proof-of-concept study reported here shows 
that we can deal with singularity in the equations from which 

~the velocity is extracted, as indicated in Ref. 5. 
From a numerical standpoint, the integration along the 

characteristic curves is stable, and a relatively large integra- 
tion step size (100-1000 steps per characteristic) is suffi- 
cient. For the flow and boundary conditions considered, 
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FIG. 16. Here x= 1.8. Re = 2, cr=7, fc = 2, J= 160, A/=48, A*= 10"2, /s=400, ./8=68, and 77=10-". Averaging takes place on the M temperature fields, then 
u and v are extracted. (a)M = 10; (b) A* = 100; (c) A* = 1000; (d) M = 10 000. 

knowledge of the scalar on a 400X68 grid is sufficient. 
Available CCD arrays can be used to obtain scalar data with 
this resolution. 

We have introduced multiplicative noise and have 
shown how to deal with it by averaging noisy scalar fields. 
More sophisticated filtering and smoothing techniques may 
be more attractive at higher noise levels. The trade-off be- 
tween the number of images that need to be processed (with 
simple averaging), the computational complexity (of concern 
as the sophistication of the image processing increases), and 
the cost of special purpose hardware (to reduce the CPU time 
associated with image processing) will determine the best 
approach in a given situation. We conjecture that additive 
noise will give qualitatively similar results at low noise lev- 
els. 

The ultimate goal of this work is to develop a real-time 
version of this velocity extraction technique for use in flow 
control and state estimation. In unsteady three-dimensional 
flows, the issue of spatial resolution will be critical in deter- 
mining temporal resolution when simultaneous volumetric 
data cannot be acquired, in which case two-dimensional im- 
ages must be "scanned" in the third direction. The spatial 
and temporal resolution requirements will thus be important 
in determining framing and processing rate requirements for 
use of this technique in real-time applications. 
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Abstract.   We present a globalization of the Krawczyk algorithm to compute all real 

isolated solutions of systems of N real polynomial equations.    This is accomplished by 

transforming the original system to an augmented system in RN*\ in which each of the first N 

variables lies in the interval [-1,1], and the (AM-l)-th variable lies in [0,°°). The domain of this 

latter variable can be divided into two intervals [0,1] and [1,°°), the second of which is mapped 

to [0,1]. Thus, the entire domain RN+] can be examined by considering the finite domain [-1,1]" 

x [0,1] for each of two systems. One of the augmented systems can have one or more solutions 

not corresponding to finite solutions of the original system. We use techniques from algebraic 

geometry to transform the (N+l)-th dimensional system so that spurious solutions are excluded, 

thus restricting the solutions to those corresponding to finite solutions of the original system. 

The algorithm requires bounds for multivariate polynomials over a finite domain. The best of 

three bounding methods considered uses an interval extension of the system, which is stored as a 

rooted, ordered tree, and is equivalent to an JV-dimensional Homer scheme that takes advantage 

of polynomial sparsity. 

We extend the approach to deal with systems having nonsimple solutions (i.e., with 

multiplicity greater than unity), at which the Jacobian vanishes. This is accomplished by 

constructing a new system that reduces by one the multiplicity of nonsimple solutions. Except in 

degenerate cases, this approach can be applied sequentially until no roots have multiplicity 

exceeding one. 



1. Introduction.   We present here a new computational technique for finding all real 

solutions in RN of systems of polynomial equations 

(1) fi{xvx2,-,xN) = 0 \<i<N   . 

To put the present work in context, we begin with some background. 

Nonlinear equation systems such as (1) arise in many applications. For example, a 

fundamental problem in computer-aided geometric design is the efficient computation of all the 

real solutions of a system of multivariate polynomial equations within a given domain. Such 

equation systems can arise from the need to find all points of intersection between pairs of 

curves, and curves and surfaces, as well as points lying on curves corresponding to the 

intersection of two surfaces [1]. Nonlinear equation systems also arise in computer-aided 

process design where large equation systems are used in, for example, steady-state process 

flowsheet modeling [2-3]. Another important application is the solution of nonlinear systems 

arising from spatial discretization of boundary value problems having polynomial nonlinearities, 

such as the Navier-Stokes equations. 

Solution techniques for nonlinear equation systems divide into two broad classes. The first 

is the class of local methods, where one seeks a solution by starting with an initial iterate. These 

methods include single- and multi-point iteration techniques (e.g., Newton-Raphson, Muller's 

method). The second class of methods systematically attempts to find all solutions in a domain. 

These methods include homotopy and subdivision (e.g., bisection) techniques, as well as 

techniques that reduce the dimension N to unity (e.g., methods using resultants, Gröbner bases). 

If enough information is available to select a good initial iterate, single point iteration schemes 

can find single solutions well. If the initial iterate is within the region of convergence of (1), the 

method will converge.    If, on the other hand the initial iterate is outside the region of 

convergence, the method might converge to another solution or not converge at all. 

Algebraic schemes can be used to reduce solution of (1) to finding zeros of a univariate 

polynomial. The main approaches use elimination [4-5] or the Gröbner transformation [6-7]. 

The advantage of these methods is that computation of the solutions of a univariate polynomial 



equation is a standard procedure, so that these techniques are capable, in principle, of finding all 

solutions in CN. The manipulative burden of reducing an ^-dimensional system to a lower- 

dimensional system (typically one dimension) can be significantly diminished by symbolic 

mathematical programs. The disadvantages are that these methods suffer from numerical 

instability and undesirable cost growth (e.g., memory and time) as JV increases. 

Homotopy methods [8] embed (1) in a family of systems H(x,t). A frequently used 

embedding is the simple one-parameter linear homotopy H(x,t) = (\-t)G(x) + tf(x). The 

continuation parameter t connects the target system (1) to a system G(x) = 0, for which all 

solutions in CN are known. An advantage of homotopy approaches is that they allow all 

solutions (real and complex) of (1) to be found. However, since the starting points of real 

solutions cannot be identified in advance, all solution paths must be followed in order to compute 

all the real solutions. For polynomial systems, the number of paths is typically equal to the total 

degree. 

The class of global subdivision techniques includes interval methods. These methods find 

all solutions of (1) in a finite domain.  As discussed by Moore and Jones ([9], p. 1056), three 

possibilities arise when examining such a finite domain. One is sometimes able to show that no 

solution exists, or that at least one solution exists. The third possibility is that no such conclusion 

is possible.   In the latter case, bisection is used to subdivide the given domain until each 

subdomain is shown to either contain or not contain a solution.   A key advantage of this 

technique is that it finds all real solutions in a finite domain without computing the complex 

solutions.   Interval methods that take advantage of large-grained parallelism now provide an 

efficient approach to compute all solutions in a finite domain for application problems of small 

and intermediate dimension (cf. [10-13]). 

In this paper, we show how a technique that uses interval arithmetic and a contraction 

mapping algorithm [9,14-15] to find all solutions of (1) in a finite domain can be generalized to 

find all solutions of (1) in RN. The generalization to unbounded domains is significant in that it 



lifts the requirement that bounds be established for the solution(s), frequently by techniques that 

are ad hoc or problem-dependent. 

2. Development of a global method. In this section, we introduce notation, review a few 

fundamentals of interval analysis, and introduce the Krawczyk operator. We then proceed to 

globalize the latter, present the basic algorithm, and discuss how it deals with spurious solutions, 

solutions on or near the boundaries of intervals, and nonsimple solutions. 

2.1. Background. Here, we establish notation and briefly review the basics of interval 

analysis and computation [16-17], the Krawczyk algorithm [17-18], and Moore's approach to 

computing real solutions of multivariate equations by bisection of interval vectors [9,17]. 

An interval X is a closed and bounded set of real numbers [a,b]. An interval vector X is 

an ordered «-tuple of intervals.   (In this paper, scalars and vectors are denoted by Roman 

variables with no underscoring and single underscoring, respectively.   Real matrices are 

represented by double-underscored Greek variables, with the exception of the N x N identity 

matrix, denoted by  /„,.    All other double-underscored Roman variables denote interval 

matrices.) Arithmetic operations on intervals are defined straightforwardly.  For example, the 

product Z = XY defines an interval containing the product xy for all x e X and all y e Y. An 

interval extension F of/is an interval-valued function whose range F(X) includes f(x) for all 

xeX. One way to obtain Fis to replace the real variables in/by their corresponding interval 

variables. Such an F might also contain points that do not correspond to f(x) for any xeX. 

We denote the width of an interval X by w(X) = b-a. The midpoint of an interval is defined 

asm(X) = (b + a)/2. 

The algorithm used by Moore and Jones [9] is based on the work of Krawczyk [18], who 

used the Brouwer fixed point theorem to develop an interval-based Newton-Kantorovich 

mapping. The Krawczyk operator is defined by 

(2) K(X) = h-0f(h) + {lN-0J(X)}{K-h)   , 

where <P is an arbitrary nonsingular real matrix and h is the real vector /«(JQ,"while /^ is the 

identity matrix and £(2Q is an interval extension of the Jacobian of the vector-valued function 



/. (Midpoints of interval vectors and matrices are defined as the midpoints of their elements.) 

We define v(X_) = II w, to be the volume of a rectangular portion of R   . 

2.2. Globalization. In order to globalize the Moore-Krawczyk algorithm [9], one needs to 

be able to examine the infinite domain RN. With this in mind the polynomial system (1) is 

mapped from the original system (1) in RN to an augmented system in RN+X by the 

transformation 

(3a) >V+i = It 
;=1 

(3b) y, = x,yN+] \<i<N   . 

After multiplying each transformed equation by v*+], where d, is the degree of the /-th equation, 

we get 

(4a) gj(yv-,yN+>) = o \<j<N   , 

in which the term or terms of highest degree in each equation of system (1) are invariant. The 

(N+l)-th equation is 
N     7 

(4b) gNAyv--,yN) = ly,. =1  • 

Thus, the solutions of (4a,b) lie on a semi-infinite right circular cylinder of unit radius for N = 2, 

and on a semi-infinite unit hypercylinder for N > 3. The rectangular domain to be examined in 

order to find all solutions of (4a,b) is 

(5) ^6[-l,l]   , yw+1e[0,oo)   , \<i<N   . 

Thus, the transformation reduces the problem to one for which only one variable is unbounded. 

We note that if a null solution of (1) exists, it will not be a solution of (4). The existence of such 

a solution is easily verified. 

The unbounded domain [0,«>) can be broken up into the intervals [0,1] and [1,°°). Using 

the transformation 

(6) »,->.        _1*/SN 

w*+i = V>v+i > 



the interval [1.°°) is mapped to [0,1]. This mapping gives rise to the system 

(7) g;-(w„-,wA,+1) = 0 1<;<JV+1   . 

Thus the entire domain RN+] can be examined by considering a finite domain for each of 

the systems (4a,b) and (7). 

2.3. Basic Algorithm. An algorithm implementing these ideas is represented by 

pseudocode in Figure 1. The algorithm examines finite domains Y, and eliminates those that can 

be shown to not contain a solution. If the mapping (2) gives a contraction (K(Y) c Y), then Y 

contains a solution. In the event that no existence or nonexistence result is obtained, Y is 

bisected, as described in detail below, and added to a "stack" of finite domains to be examined. 

This process proceeds until the initial domain has been examined and all solutions have been 

found. 

Examination of each finite domain begins with a nonexistence test [9], checking to see if 

(8) 0€Gj(Y) 

is true for some;', 1 <;'< N + \. If (8) is satisfied for some;, then Y contains no solutions of 

(4a,b), and Y is discarded. If (8) is false for each;, the possibility remains that Y contains a 

solution of (4a,b). In that case, a second, new nonexistence test (see Appendix) checks 

(9) \gj(m(Y))\>l^w(Jjk) + \m(JJk)\y2w(Yk) 

for each;'. If (9) is false for each;', we compute the mapping (2), using the choice 

[m(l(Yk))[] if \\LN-£kl(X!L)l<\\lN-^k-'jJYk-l)\ 

3>*-1 otherwise 

k (10) 0k = 

Otherwise, Y contains no solutions and is discarded.   If m(J) is singular, we bisect the 

corresponding Y, and place the resulting interval vectors on the stack.   Otherwise, (2) is 

computed and a third nonexistence test is applied, which checks for emptiness of 

(11) Z = K(Y)nY   . 

If (11) is empty, then Y contains no solutions of (4a,b) and is discarded. If (1 l)is nonempty, we 

check to see if 



(12) YjZKjiZ) 

is true for 1 < ;' < N +1. If so, Y is bisected. Otherwise, an existence test which checks 

(13) Kj(Y)czYJ 

is applied. If (13) is true for 1 < j < N +1, a contraction has taken place and Y is guaranteed to 

contain a solution of (4a,b). In that event, any point in Y will be a safe starting point (with 

guaranteed convergence) for use with interval Newton-Raphson [9]. Details of the convergence 

and solution acceptance are shown in Figure 1. 

At this point, either a) a solution has been shown to exist in the current interval vector Y, b) 

nonexistence tests have excluded a solution in Y, or c) nonexistence tests have failed to exclude 

all or part of Y from further consideration. The final step is deciding whether to place (11) on 

the stack, or bisect (11) and place the resulting interval vectors on the stack. We decide this by 

computing v(Z)/v(F). If this volume ratio is less than y (chosen arbitrarily), (11) will be placed 

on the stack, and bisected otherwise. This ends a typical pass through the main algorithm. 

(Trial-and-error experimentation shows that the threshold y - 1/2 works well.) 

In order to bisect Y, the direction of bisection must be chosen. This choice can greatly 

affect the efficiency of the overall scheme. We consider two schemes for making this decision. 

Scheme 1 bisects in the direction with index; for which Wj(Yj) is maximum. This scheme tends 

to minimize the ratio max Wj(Yj) /min Wj(Yj). Scheme 2, described in [19], defines 

(14) 5; = max[|j/Jjt| , I^H^yp   , 

and bisects in the direction with index; for which Sj is maximum, where J{jk and Jujk are the 

lower and upper bounds of the jk-th element of the interval Jacobian, respectively. A 

comparison of results for these two bisection schemes will be presented in section 4.4. 

2.4. "Spurious" Solutions. In some cases, some solutions of the augmented system (4a,b) 

will not correspond to finite solutions of the original system (1). These spurious solutions, with 

>>w+1 = 0, are introduced by the transformation and multiplication described in-section 2.2. For 

example, the system 



(15a) 5x? - 6x,5x2 + x,x2 + 2x,x3 = 0 

(15b) -2x,6x2 + 2x2x2
3 + 2x2x3 = 0 

(15c) x2 + x2-0.265 = 0 

when transformed gives the augmented system 

(16a) 5 v? - 6y\y\y\ + yy'yt + 2y,y3yl = 0 

(16b) -2y'y2+2y^yly2
A+2y2y3yl = 0 

(16c) y2 + y2
2-0.265y]=0 

(I6d) yl + yl + yl-i = o , 

which has two spurious solutions (0,0,±1,0), corresponding to unbounded solutions of the 

original system (15a-c). On the other hand, the system 

(17a) 1 + 2x, - 3x,2 + 4x2 + 5x2 - 6x,x2 = 0 

(17b) -7 - 8x, + 9x2 -10x2 -1 lx2 + 12x,x2 = 0 

when transformed gives the augmented system 

(18a) y] + 2y v3 - 3y2 + 4 v2 v3 + 5y] - 6yxy2 = 0 

(18b) -7^ - 8yy2 + 9y2 -10y2 v3 -11 y] +12 v, v2 = 0 

(18c) v2 + v2
2-l = 0   . 

The transformed system (18a-c) has no real solutions with v3 = 0, so globalization introduces no 

spurious solutions. 

It is apparent from the properties of the mapping that every real finite solution of (1) is also 

a real finite solution of (4a,b). Thus, the real solutions of (4a,b) consist of the real solutions of 

(1) and any spurious solutions introduced by the transformation and multiplication described in 

section 2.2. No such solutions occur if the equations formed by omitting all but the leading- 

order terms (i.e., those of highest total degree [7]) in (1) have only isolated solutions, which 

when transformed do not satisfy ^ v2 = 1. Spurious solutions will occur if at least one original 

variable (x,,--,xw) is absent from the leading-order terms in each equation in (1), or appears in 

all of the leading-order terms of more than one equation. In the example (15a-c), x3 is absent 

from the leading-order terms in each equation, whereas each variable appears in at least one 



leading-order term in at least one equation of (17a,b), in which system no variable is present in 

all leading-order terms in more than one equation. 

It is possible to transform (4a,b) so that solutions with yw+1 = 0 are excluded, thus 

restricting the solutions to those corresponding to finite solutions of (1). This is accomplished 

using techniques from algebraic geometry. To remove all solutions with yN+] = 0 from (4a,b), 

the ideal quotient [7] of the ideals generated by yN+] = 0 and the N equations of (4a) is found. 

The ideal quotient is itself an ideal defining a new system of N equations.   That system, 

combined with (4b), has a solution set identical to the solution set of (4a,b), less the spurious 

solution(s) of the latter.  To compute the ideal quotient one determines the intersection of two 

ideals, using Gröbner bases [7]. For example, the system (15a-c) has twelve real solutions in R\ 

The solution set of the augmented system (16a-d) consists of fourteen real solutions, including 

the two spurious solutions noted above.  These spurious solutions can be excluded using the 

above technique. The new system is 

(19a) 68719476736 -104v3
3- 20722660655104 TO4y]yA - 

588558700544TO2 v3v
2 -3982698885y] =0 

(19b) 2048000^ - 643072 v3v4 - 9537>>2 = 0 

(19c) 64v2+64>;2-17v2=0 

(i9d) ri + y2
2+y2i-i = o . 

The solution set of (19a-d) consists of all nonspurious solutions of (16a-d), i.e., those with 

v4 * 0. The main effort in computing an ideal quotient is computing a Gröbner basis. As noted 

in section 1, the Gröbner transformation can be used to find all real solutions of (1). An 

important point to note is that to use the Gröbner transformation a specific term ordering (e.g., 

x,2x2 > x,x2 using total degree ordering) must be chosen for the monomials [7] in each 

polynomial equation of (4a,b). The choice of a term ordering (cf. [6]) affects the computational 

complexity of constructing a Gröbner basis. Our experience also shows that the ordering of the 

variables (corresponding to permutations such as (xl,x2,xi), (x],x3,x2), "etc.) can also 

significantly influence the operation count.   In most cases, the lexicographical term ordering 

8 



needed to compute a reduced Gröbner basis (most useful in computing multivariate polynomial 

zeros) requires many more operations than to compute a generic Gröbner basis using some other 

term ordering. Thus, in our removal of spurious solutions from (4a,b), we will use a 

nonlexicographical term ordering, and avoid computing any reduced Gröbner basis. 

In closing this section we note that ours is a "black box" algorithm for general use. On the 

other hand, one can use our approach as a "tool", without removing spurious solutions from 

(4a,b). In that event, there can occur cases in which a large number of very small interval vectors 

(with width less than a tolerance set by the user) contain spurious solutions. It has been our 

experience that these interval vectors can be safely discarded without loss of finite real simple 

solutions (i.e., those with unit multiplicity). 

2.5. Multiply-Computed and Boundary Solutions. This contraction-mapping algorithm 

will not find a solution lying on the boundary of the initial domain or on a boundary created by 

bisection. To ensure that all solutions of (1) are found, we take two precautions to include the 

boundaries of each domain. First, when the interval vector Y with components Y, = [y,.„ v,J is 

bisected in they'-th direction we do so according to 

(20a) y.-ly,,,,^]    and    72,, = [y,,„y„J 1</<JV+1   , i*j 

(20b) Yyj = [y, „ (1 / 2 - £,) • y,,, + (1 / 2 + e,) • y,, J 

(20c) Y2J = [(1 /2 + £,)• y,-, + (1 /2- £,)• yJ<u, yJ>u] , 

so that no point originally in the interior of Y lies on the boundary of either new subdomain. 

Here, £, > 0 is typically 0.005. The second step involves expansion of the interval vectors £, 

and Y2 before they are placed on the stack. The new interval vectors are 

(21a) Y'v = [yu, - e2w(yM), yUu + £2w(FM)] 

1 < i < N +1 

(21b) Yl = \yUJ - £2w(y2,), yUu + £2"(F2,)] 

where £2 > 0 is typically 0.0025. Thus, any solution lying on a boundary of 7, or Y2 will be 
-2 

included in 7, or Y2. 



These "precautions" can; however, lead to computing a simple solution more than once. 

This problem is addressed after all solutions of (1) have been found. We first compute the 

maximum distance dmax between all pairs of solutions. Then if the distance dt between a given 

pair of solutions satisfies 

(22) di/dmax<£3 , 

we consider the possibility that they are the same solution, where a typical value of £3 is 10"6. 

This list can contain simple solutions computed more than once. We place a box around each 

cluster of such solutions and compute the solution(s) in this box using the algorithm discussed in 

sections 2.1-2.3. Solutions which are unique will be thus identified. The final solution set 

contains the original unclustered solutions and those solutions found by this "declustering" 

process. 

2.6. Nonsimple Solutions. Like every Jacobian-based procedure, the method described 

above encounters difficulties for nonsimple solutions (i.e., those with multiplicity greater than 

one), at which points the Jacobian is singular. Since the determinant of the Jacobian is a single 

function of the variables and vanishes at every nonsimple solution, it is easy to see that at each 

such point the Jacobian either has an isolated singularity or is singular on one or more curves or 

surfaces passing through the point. Thus, unless the Jacobian has only isolated singularities, 

Newton iteration will encounter curves (in the bivariate case) or surfaces or hypersurfaces (more 

generally) on which the Jacobian is singular. This typically leads to poor convergence behavior 

[20-21]. 

Here we show how to construct a new system whose solutions include all of the nonsimple 

solutions of the original system. The multiplicity of these solutions is typically reduced by one. 

If no solution of the original system has multiplicity greater than two, then the problem is 

reduced to one that can be dealt with using the techniques described in sections 2.1-2.5. 

Otherwise, the reduction described here can be applied sequentially until the multiplicity of the 

solution with highest original multiplicity has been reduced to one, allowing reliable numerical 

solution. Our approach is a direct extension of a technique for the univariate case [22]. 

10 



We construct a new system of equations consisting of some (TV - l)-element subset of the 

original equations, augmented by the determinant of the original Jacobian 

(23) /*+,=|^(/,,/2."-./*)| = 0 • 

As indicated in examples below (section 4.4), this process can be repeated to handle nonsimple 

solutions with multiplicity greater than two. We note here that the new system can have one or 

more solutions not satisfying (1). Also, there are TV ways to construct the new equation set. As 

discussed in example 5 below, some are more useful than others. 

The method performs well for almost all systems with nonsimple solutions, as indicated by 

the examples below. As discussed at the end of this subsection, it does not work for Powell's 

degenerate system (cf. [23]), which arises from applying derivative-based techniques to 

minimization of "Powell's singular function" ([24], p. 150), and another example we have 

developed. 

1. A bivariate system with a solution of multiplicity two: 

(24a) /, = x] + x] - 2 = 0 

(24b) /2 = xj2 + 2x2
2 + 3*, + x2 - 7 = 0 . 

This system has one distinct real solution (1,1), of multiplicity two. 

The reduced-multiplicity system {f2,f^) is 

(25a) x] + 2x2 + 3JC, + x2 -7 = 0 

(25b) 4x1x2-6x2+2x,=0 , 

with a real simple solution (1,1). It is easily shown that the other real solution of (25a,b) does 

not satisfy (24a,b). In this example and the next three, any choice of TV -1 equations, augmented 

by the Jacobian of the TV-dimensional system, reduces the multiplicity. 

2. A bivariate system with a solution of multiplicity three: 

(26a) /,=;C
2
 + JC

2
-2 = 0 

(26b) /2 = x2+2x2+x,-x2-3 = 0 . 

This system has two distinct real solutions (1,1) and (-1 ,-1), the latter having multiplicity three. 

We construct the new system in two steps. In the first, we compute 
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(27a) /3=|^(/iJ2)| = 4^2-2x1-2x2=0 , 

and in the second step, for the pair (/j, f3), compute 

(27b) /4=k(/i./3)| = 8x1
2-8^2-4x1+4x2=0 . 

Then the new system (f^, f4) is 

(28a) x] + x2 - 2 = 0 

(28b) 8x2 - 8x2 - 4x, + 4x2 = 0 . 

The new system (28a,b) has the same solutions as (26a,b), with each being simple. 

3. A trivariate system with a solution of multiplicity two: 

(29a) f=x^ + x2
2-2 = 0 

(29b) f2 = xj2 + 2x2 + 3x, + x2 - 7 = 0 

(29c) /3 = x2-x2
2 + x3+2 = 0 . 

The new system is 

(30a) x,2 + 2x2 + 3x, + x2 -1 = 0 

(30b) x2-x2
2+x3+2 = 0 

(30c) " 2x, - 6x2 + 4x,x2 = 0  . 

Here, the original system has one distinct real solution of multiplicity two at (1,1,-2). We find 

this as a simple solution of the new system (30a-c). 

4. A bivariate system with two solutions of multiplicity two: 

(31a) /1=x,2 + x2+x,-2x2-5 = 0 

(31b) /2 = 52x1
2+73x2 + 72x1x2-20x1-110x2- 575 = 0  . 

The new system is 

(32a) x2+x2 + x,-2x2-5 = 0 

(32b) -144x2
2+144x1

2+84x1x2 + 60x1 + 330x2-150 = 0 . 

Here, the original system has two distinct real solutions at (-2,-1) and (1,3), each of multiplicity 

two. We find these as simple solutions of the new system (32a,b). 

5. A bivariate system with a solution of multiplicity two [21]: 

(33a) fl=x + y2=0 
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(33b) f2=lxy + y2+y3=0 . 

The new system (/], /3) is 

(34a) x + y2=0 

(34b) fx + 2y = 0 . 

The original system has two distinct real solutions at (-4,2) and (0,0), with the latter having 

multiplicity two. The simple solution at (-4,2) is found directly from (33a,b), while the solution 

of multiplicity two at (0,0) is found from (34a,b).  In this example, the choice (/],/3) leads to 

the desired multiplicity reduction, while {f2,f{) does not. 

6. A bivariate system with a solution of multiplicity three [20]: 

(35a) fl=x^+x]x2=0 

(35b) f2=x2+xj=0 . 

This system has four distinct real solutions at (0,-1), (-1,-1), (-1,1), and (0,0), with the latter 

having multiplicity three.  As in example 2, one stage of multiplicity reduction (using f2 and 

/3) results in a system where the solution of (35a,b) with multiplicity three is now a solution of 

multiplicity two. The second stage (using f2 and /4 =\l(f2,f?,)\) gives 

(36a) x2 + xj=0 

(36b) Jtj +4jt1Jt2+4;t];c2 =0  . 

The simple solutions of (35a,b) are found directly from that system, while (36a,b) provide the 

solution of multiplicity three at (0,0) and the simple solution at (0,-1). In this example, (/l5/3) 

gives no multiplicity reduction in the first stage, and (/3, /4) gives none in the second stage. 

We have found two test cases, each with nonsimple isolated solutions, that do not yield to 

our approach. One is Powell's four-dimensional system [23-24], for which the Jacobian vanishes 

on two hyperplanes, on each of which one of the original equations also vanishes.  Kearfott's 

algorithm [25] also experienced difficulty with this case. A second example is 

(37a) xf-xj=0 

'   (37b) xyx2=V , 
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for which the Jacobian vanishes only at the origin. In each case, application of our approach 

without prior multiplicity reduction yields small regions (containing the solution) for which no 

definitive statement is possible. Use of multiplicity reduction for Powell's example fails to 

define a new system for which solutions are isolated. For (37a,b), the solution of the new system 

does not have lower multiplicity. 

3. Bounding multivariate polynomials. Our approach requires bounding each equation of 

(4a,b) over a finite domain Y. Three methods are discussed and implemented for bounding 

multivariate polynomials with real coefficients over a finite domain Y_. 

In the first method [26], one transforms each polynomial of (4a,b) or (7) into generalized 

Bernstein form, computes its Bernstein coefficients, and takes the minimum and maximum as the 

bounds over Y. This method gives exact bounds if and only if the original polynomial is 

monotonically increasing or decreasing on the domain over which a bound is required. 

The second method [26-27] is based on the mean value theorem and uses function 

evaluations and a Taylor-like correction term to bound each polynomial of (4a,b) or (7) over Y. 

This method relies in part on polynomial evaluations. The evaluations are computed using the 

tree traversal method [28]. To use this method the coefficients of (4a,b) or (7) are stored as a 

rooted, ordered tree and then traversed by pre-order traversal. This technique is equivalent to an 

A'-dimensional Homer scheme and takes advantage of polynomial sparsity. 

The third method [17] is based on the interval extension Gj(Y) of either (4a,b) or (7). An 

interval extension is found by evaluating the polynomial (real variables replaced with interval 

variables) using the tree traversal technique used in the second method. 

The polynomial bounding method was chosen based on extensive tests for univariate and 

bivariate cases. It was found that the first method gives the tightest bounds for a given 

computational cost. The second is comparable to the first in time but easier to implement in 

higher dimensions. The third method is much faster, but provides less tight bounds. The first 

method is the hardest to implement using the "tree traversal representation "of polynomials 

employed here. The second and third methods are easily implemented using some form of tree 
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traversal, while also being easily extended to higher dimensions. After running examples 

utilizing each method in the "solver," we conclude that the third method gives the best overall 

performance (i.e., lowest total time). 

These techniques give bounds that include the true range of gj. Computational burden is 

associated with the fact that these bounds are not "tight." The extent to which this is acceptable 

depends on the relationship between bounding costs and other computational costs. For this 

reason, it is desirable to find a means of increasing the tightness of any bounding scheme. This 

is accomplished by bisecting the initial domain and computing bounds for each resulting 

subdomain. The final bounds over the initial domain are taken to be the minimum and maximum 

of the bounds found for the subdomains. This is continued until the bounds attain the desired 

tightness over the initial domain. 

4. Computational results. In this section, we present results for four groups of test 

problems, along with a comparison of bisection techniques. The first group of test problems 

consists of what have become standard tests for nonlinear equation solvers. The second and third 

sets consist of jV-dimensional quadratic systems with random coefficients, and bivariate M-th 

degree systems with random coefficients. 

4.1. Standard Test Cases. The first test suite is a subset of the test suite from [25], and 

includes problems with a physical basis (e.g., a combustion problem) and made-up test cases. 

These problems have been used as test cases for homotopy methods, as well as for simplicial and 

interval-Newton methods. The "Remarks" are generally taken or paraphrased from [25]. 

1. Brown's almost linear system (N=5): 

(38a) fl = x, + Y,xJ-(N+\) = 0 \<i<N-\ 
>=' 

(38b) /W=fl*,-1 = 0 

Remarks: The Jacobian matrix is said to be ill-conditioned at the two solutions of 

smallest magnitude [25]. This junction [29] is also found in [23]. 

It is shown in [23] that (38a,b) has two solutions for even N and three for odd N. We find three. 
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2. Combustion chemistry problem: 

(39a) /1=-1.697-107x2x4+2.177-107x2+0.55x1x4+0.45x1-;c4 = 0 

f7=1.585-1014x2x4 + 4.126-107x1x3-8.285^0^*4+ 2.284-107x3x4 

(39b) 2 

-1.918-107x3+48.4x4-27.73 = 0 

(39c) /3 = x,2-x2=0 

(39d) /4 = x4
2-x3=0 

Remarks: These equations arise in a chemical equilibrium problem [30]. The problem 

has been solved via continuation methods. It has a unique solution within 

the nonnegative unit box, but has other, nonphysical solutions in larger 

domains. 

We find two real solutions, one physical and one nonphysical. (Note that the coefficient of the 

x3 term in f2 is given with different signs in [25] and [30].) 

3. A high-degree polynomial system: 

(40a) 5x,9 - 6x,5x2 + x,x2 + 2x,x3 = 0 

(40b) -2x,6x2 + 2x]x\ + 2x2x3 = 0 

(40c) X]+4 -0.265625 = 0 

Remarks:  This problem has 12 real solutions, which are all within the box [-0.6,0.6] x 

[-0.6,0.6] x [-5,5], and eight other finite solutions. The total degree is 126. 

Thus, this system causes trouble for most homotopy continuation methods. 

We find all 12 real solutions. 

4. Rosenbrock'sfunction: 

(41a) /,=l-x,=0 

(41b) /2=10(x2-x,2) = 0 

Remarks: This problem is a standard test case for minimization algorithms [31] and has 

also been considered from the standpoint of a nonlinear equation system [32]. 

We find the sole solution (1,1). 

5. A variable-dimension system of quadratics: 
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(42a) fl = (x-O.Yf + xM- 0.1 = 0 \<i<N-l 

(42b) /A,=(xw-0.1)2 + x,-0.1 = 0 

Remarks: This simple system of quadratics can be used to test the effects of increasing 

dimension on bisection methods. Since its Jacobian matrix is sparse, it can 

also be used to debug techniques for handling structured problems. 

We find the two real solutions for N =4. 

4.2. TV-Dimensional Systems of Quadratics.   This test suite consists of systems of 

quadratics 

(43) /, = a, + ibljXj + I iciJkXjxk \<i<N 
7=1 7=1  * = 1 

with varying dimension N. The coefficients are chosen randomly between -10 and 10, so that 

unlike example 5 of section 4.1, the Jacobian is typically not sparse. This test suite can also be 

used to test the effects (e.g., on cost growth) of increasing dimension. Table 1 shows running- 

time statistics on a 166MHz Pentium machine for 10 test systems for each N. Running time 

depends strongly on dimension. The large standard deviations indicate a considerable sensitivity 

with respect to the coefficients. 

4.3. Pairs of M-th Degree Equations. This test suite consists of bivariate systems of 

various degrees. The coefficients are again chosen randomly to be between -10 and 10. Table 2 

shows running-time statistics (same machine as used in section 4.2) with an ensemble of 100 

bivariate systems. One can see by comparing tables 1 and 2 that cost grows less rapidly with 

degree than with dimension, as expected. We also note that the ratio of mean times 

<7>M/<r>M+1 increases slightly with the degree M, and that although the ratio of the 

standard deviation to the mean time decreases slowly (and not quite monotonically) with degree, 

the ratio of maximum to minimum run times decreases consistently and significantly with 

degree. 

4.4. Bisection Scheme Comparison. In this section we present timing results for the two 

bisection schemes discussed in section 2.3. Table 3 shows running-time statistics (same machine 
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degree. Scheme 2 is slightly faster. For small degree, some variation in running time is expected 

for test suites.having identical coefficients. 

5. Discussion. For broad classes of multivariate polynomial equation systems, the 

numerical solution technique discussed in this paper has several advantages over other global 

methods. First, our technique seeks and finds only real solutions of (1), unlike homotopy 

methods which must track all solutions (i.e., complex and real solutions). Second, our method 

can be used to find all solutions in a finite subdomain of RN (e.g., when the solutions must all be 

nonnegative, as when computing concentrations in chemically reacting systems, allocating 

resources, etc.) without dealing with the rest of RN, thus making it possible to omit the 

globalization transformation section 2.2. Third, the technique can be tailored to quadratic 

systems (for which the Jacobian is linear and can be bounded exactly) to significantly reduce run 

time.   Finally, by assigning subdomains to all available processors, the code can easily be 

parallelized [12]. 

Our approach to computing nonsimple solutions also has advantages over existing methods. 

First, unlike approaches [20-21] that carefully select the initial iterate to "coax" Newton methods 

to converge at singular points (with generally sublinear convergence), we consider a sequence of 

new systems, each having a lower multiplicity at these singular points until the multiplicity is 

reduced to one. This allows our interval extension of Newton's method to converge 

quadratically. We also note that the multiplicity reduction technique can be used as a pre- 

transformation for Newton-Raphson and other single-point iteration techniques. 
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APPENDIX 

A computationally verifiable sufficient condition is given for nonexistence (in a rectangular 

domain) of a solution to a system of polynomial equations. Using this test, which is based on the 

Krawczyk operator, the number of bisections required by the Moore-Krawczyk algorithm can be 

significantly reduced. 

We call the reader's attention to the explicit dependence of (2) on the real matrix 0, which 

can be chosen arbitrarily, subject only to |0|*O. We note here that the theorems [9,17] 

concerning application of (2) are true for arbitrary nonsingular &. In what follows, we exploit 

this flexibility to develop a nonexistence criterion. 

We begin by recognizing that every solution of (1) in X must lie in K(2L,t,£) f°r every 

h in X and every nonsingular <P. As we have fixed h, we will concentrate on choosing <P. 

We rewrite (2) in component form (using index notation) as 

(Al) K, = m(X,)-<PIJfJ(h) + {Slk - 0y(^(J;J + [-l,l]X^))}(^ -m(Xk)) 

where J is in midpoint-halfwidth form [17]. We denote K, and X, by [£,,£,] and [^X,], 

respectively, and note that K(X,h,0)C\X will be empty (and hence (1) will have no solutions 

in X) if 

(A2) K±>'x~i   or   K^X, 

for some combination of / and (nonsingular) <|>. We are thus led to rewrite (Al) as 

(A3) K, = m(X,)- <V,(Ä) + {5* - *„«(./*)- <MW(J;J[-1,1]}>(^)[-1,1] 

from which it follows that 

(A4a) K, = m(*,)- <V//i)-{|5* - <^«(^)| + K|M^)}W**) 

and 

(A4b) K, = m(Xi)-<PiJfj(h) + {\dik - ^(J;,)| + |^|iw(J;,)}>(^) 

From (A4a,b) we have 

_   (A5a) £*!»(*,)-V^H5* +|^J_K^)| + |^|i>v(^)}i>v(^) 

and 
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(A5b) ^>^(^)-^///?)-ivv(^)-|0y|{|M^)| + i>v(J7,)}>(^)   , 

from which follows an important result. 

Theorem. If 

(A6) \fj(h)\> (±w(Jjk) + \m(Jjk)^2w(Xk) 

is true for some/, then (1) has no solutions in X_. 

Proof. 

From (A2) and (A5b), it follows that if 

(A7) w(^J-Vy^)-^^)-MH^^ + ^J>l)H^^>>m(^')+2M<-Y') 

is true for some / and nonsingular 0, then K(X,h,0)[]X = <j) . Therefore, from (A7), 

(A8) -<P0fj(ä)-\^l){{\rn(Jjk)\ + ^(JJk)}^w(Xk)>w(Xi) 

will be sufficient to ensure emptiness.   Assume (A6) holds for some;'.  There are two cases. 

First, consider /; > 0. Then choose 

^                              w(Xm) „ 
(A9) - tf>   > n p—^ i > 0 

for one m (we take m = j for simplicity), <Pnj = 0 for n * j, and <Pr5 = <5„ for s* j  Thus, (A8) 

is satisfied and |<£|* 0. For f j < 0, we need only choose 

(MO) <PmJ>] j-fj ^^ s >0 J    \fj(h)\-{\m(Jjk)\ + ±w(Jjk)y2w(Xk) 

for one m, with the other elements of <P chosen as before. Thus, if (A6) is satisfied for some;', 

we can construct a nonsingular <P such that (A8) is satisfied, and K(X_,h,0)f]X_ will be empty, 

proving the theorem. 

A simple interpretation of this theorem is possible. For N = 1 (a one-dimensional system), 

(1) will have no zeros on an interval [a,b] if 

(All) |/(^)|>^n,ax|/'(*)|   , 

the meaning of which is obvious.  In N dimensions, satisfaction of (A6) means that the y-th 

component of the function value f(h) is too large for /; to vanish in X_. 
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TABLE 1 

Running-time statistics for quadratic systems as a function of dimension N. 

maximum minimum mean standard 

dimension, N time (sec) time (sec) time (sec) deviation 

2 0.187 0.032 0.113 0.047 

3 2.875 0.562 1.728 0.731 

4 133.8 31.44 52.54 29.74 

5 1267 420.5 949.4 289.8 

TABLE 2 

Running-time statistics for pairs of higher-order equations as a function of degree M. 

degree, M 

T max 

maximum 
time (sec) 

T min 

minimum 
time (sec) 

mean 
time (sec) 

standard 
deviation 

2 0.281 0.031 0.079 0.039 

3 0.938 0.125 0.295 0.135 

4 1.781 0.344 0.823 0.289 

5 3.844 0.875 1.916 0.715 

TABLE 3 

Mean running-times for pairs of higher-order equations using two bisection schemes. 

Scheme 1 Scheme 2 
degree, M mean time (sec) mean time (sec) 

2 0.087 0.081 

3 0.295 0.275 

4 0.82~3 0.773 

5 1.916 1.709 
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while stack not empty 
get interval vector Y from stack 
compute Gj(Y) 

if (8) false 
no solution in Y 

else if (9) true for somej 
no solution in Y 

else if 0 singular 
bisect Y and place its halves on stack 

else if K(Y)nY = 0 
no solution in Y 

else if Y c K(Y) 
bisect Y and place its halves on stack 
else if K(Y) c Y 

solution lies in K(Y) 

if 

®° = * 
Yl = Y 
for A=l:#iterations 

do 
compute <Pk = <P(Yk) 

compute £k = LN ~ <tkl(Y.k) 

if|tf1/|tf*i>l 
<pk = <pk~] 

end if 
compute Yk+l = YknK(Yk) 

while |y*+1-yi|>e 

end for 
end if 

else 
compute Z = K{Y)r\Y 

if v(Z)/v(K)<y 
place Z on stack 

else 
bisect Z and place its halves on stack 

end if 
end if 

end if 
end while 

Figure 1. Pseudocode of the basic algorithm. 
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